Synthesis and characterization of novel functional electrosterically stabilized colloidal particles prepared by emulsion polymerization using a strongly ionized amphiphilic diblock copolymer.
نویسندگان
چکیده
Amphiphilic diblock copolymers such as poly(styrene)-block-poly(styrene sulfonate) (PS-b-PSS) (Matsuoka, H.; Maeda, S.; Kaewsaiha, P.; Matsumoto, K. Langmuir 2004, 20, 7412), belong to a class of new polymeric surfactants that ionize strongly in aqueous media. We investigated their self-assembly behavior in aqueous solutions and used them as an emulsifier to prepare electrosterically stabilized colloidal particles of different diameters between 70 to 400 nm. We determined the size, size polydispersity, effective charge, total dissociable charge, structural ordering, and phase behavior using light scattering, transmission electron microscopy (TEM), small-angle neutron scattering (SANS), and potentiometric titration. These experiments clearly demonstrated that all of the synthesized particles were nearly monodisperse (polydispersity index<or=6%). The results of DLS and TEM clearly suggested the existence of hairy particles. The form factors obtained by SANS were well described by a polydisperse sphere model. The estimated total number of dissociable charges per particle was found to be larger than 10(4)e, whereas the effective charges per particle were found to be around 1000e. This significant difference suggested the confinement of charges inside the corona regions of the polyelectrolyte brush shell. Finally, these monodisperse particles were found to self-assemble into 3D ordered colloidal crystalline arrays at a low volume fraction (=0.00074) that diffract light in the visible region.
منابع مشابه
Surfactant-free synthesis of amphiphilic diblock copolymer nanoparticles via nitroxide-mediated emulsion polymerization.
Amphiphilic hairy nanoparticles are prepared in a one step, batch, heterogeneous polymerization of styrene or n-butyl acrylate, using a water-soluble poly(sodium acrylate) alkoxyamine macroinitiator based on the SG1 nitroxide.
متن کاملColloidosomes from Peroxidized Pickering Emulsions
A new approach to synthesis of cross-linked colloidosomes (microcapsules with a shell from colloidal particles) was developed on the basis of a peroxidized Pickering emulsion (an emulsion stabilized exclusively by peroxidized colloidal particles). Peroxidized latex particles were employed to ensure formation of Pickering emulsion. Free radical polymerization was used to convert droplets of a pe...
متن کاملSynthesis of well-defined epoxy-functional spherical nanoparticles by RAFT aqueous emulsion polymerization†
The environmentally-friendly synthesis of epoxy-functional spherical nanoparticles has been achieved using polymerization-induced self-assembly (PISA) in aqueous solution. Firstly, a non-ionic hydrophilic stabilizer block, poly(glycerol monomethacrylate) (PGMA), was prepared by reversible addition–fragmentation chain transfer (RAFT) solution polymerization in ethanol. This water-soluble precurs...
متن کاملIn-situ synthesis and characterization of conducting metal — polyaniline nanocomposites
Metal—Polyaniline nanocomposites such as Platinum-Polyaniline nanocomposite is prepared by insitu oxidative polymerization of aniline and reduction of Pt+4 ions into Pt nanoparticles. Thepolymerization of aniline was carried out in the presence of 1(2PtCN6 [Potassium Hexa CyanoPlatinate (IV)] as oxidizing agent. During the reaction aniline monomers undergo oxidation andform polyaniline (PANT) w...
متن کاملFormation of polymer vesicles by simultaneous chain growth and self-assembly of amphiphilic block copolymers.
Polymerization-induced formation of amphiphilic diblock copolymer vesicles is performed in water at high concentrations by a single-step nitroxide-mediated controlled free-radical emulsion polymerization of 4-vinylpyridine, initiated by a water-soluble poly(sodium acrylate) macroalkoxyamine at alkaline pH.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 25 4 شماره
صفحات -
تاریخ انتشار 2009